Introduction

Radon Control in Schools

Key Messages

- Effective radon control depends on understanding of radon entry mechanisms
- 2. More than 25 years of experience of successfully:
 - A. Reducing radon in schools
 - 1) Facility managers are a key team member
 - 2) Thorough diagnostics saves money
 - 3) Consultants and contractors need to be trained, and eventually certified, for school building mitigation
 - B. Preventing radon problems in new schools is straight forward
- **3.** National standards offer essential guidance

Introduction

Radon Concentrations in U.S. Schools (EPA,

1993 National School Radon Survey, Washington, DC: U.S. EPA)

Radon Concentration	Ground Contacted Classrooms	EPA Radon Potential Zone	Percent of Classrooms > 4 pCi/L	Ground Contacted Classrooms <u>></u> 4 pCi/L	Percent Schools <u>></u> 4 pCi/L
0-2 pCi/L	91%	High	6.8%	None	80.7%
2-4 pCi/L	6.3%	Medium	2.7%	1 or 2	9.9%
4+ pCi/L	2.7%	Low	0.8	3 to 5	4.2%
				6 or more	5.1%

Introduction

Radon Mitigation Standards

#1. Iowa is a regulatory state

#2. Iowa's regs and rules are influenced by national standards, e.g.

U.S. EPA, 1994

ANSI/AARST, forthcoming

U.S. EPA, 1994

© 2014 Board of Regents University of Minnesota

US EPA Reducing Rn in Schools Guidance

- 1.0 Introduction
- 2.0 Indoor Environment
- 3.0 Correcting Rn Problems
- 4.0 HVAC Restoration
- 5.0 Retest Radon
- 6.0 Detailed Investigation
- 7.0 Design and Implementation of Mitigation
 - 7.1 Active Soil Depressurization (ASD)
 - 7.2 Pressurization
 - 7.3 Dilution

- 8.0 Post-Mitigation Testing
- 9.0 Long-Term Radon Management
- 10.0 Special Considerations

ANSI/AARST Rn Mitigation Standard

- 1.0 Scope
- 2.0 Significance of Use
- 3.0 Qualified Contractors
- 4.0 General Practices
- 5.0 System Design
- 6.0 Building Investigation
- 7.0 ASD System Installation
 - 7.1 Suction Points
 - 7.2 Piping (ducts)
 - 7.3 Pipe Sizing
 - 7.4 Exhaust Discharge
 - 7.5 Fan Installation

- 8.0 Sealing
- 9.0 Required for All Systems
 - 9.1 OM&M Plan
 - 9.2 Fan Monitors
 - 9.3 Electrical
 - 9.4 Labeling
- 10.0 Non-ASD Methods
- 11.0 Post-Mitigation
- 12.0 Operations, Maintenance and Monitoring Plans
- 13.0 Health and Safety

Radon Mitigation Standards for Schools and Large Buildings

Radon Entry

Radon Control in Schools

7

Radon Entry

Three Factors Needed for an Indoor Air Quality Problem

1. Sources of air contaminants

- Radioactive decay of Uranium in underlying rock and soil
- 2. Building occupants (the affected persons)
- 3. Transport mechanisms that move the contaminant to and from the occupant
 - Air pressure differences
 - Pathways

<u>Radon Entry</u>

Radon Sources

Soil and geology Most common source

- Uncommon
 - Indoor building materials
 - Such as concrete and masonry
 - Rarely a major source
 - Well water used indoors
 - Released into air with aeration
 - Rarely a major source

Radon Entry

□ 1,364 pCi/L

Radon Concentrations: Classrooms and Soil (4 feet)

Radon Entry Radon Source and Other Factors

What could account for this pattern of indoor radon?

Radon Entry Review: Transport Mechanisms

Pressure Driven Airflow

Air enters building through both

- Above grade air leaks
 - Dilutes indoor radon concentrations
- Below grade air leaks
 - Delivers radon from the soil to the indoors
- Air pressure differences are the dominant driving force for radon entry in schools
 - Air always moves from high to low pressure

Radon Entry

Lower Indoor Air Pressure Draws Soil Gas Indoors

Radon Entry
Soil Gas Entry – Unplanned Airflow

^{© 2014} Board of Regents University of Minnesota

Radon Entry

What Powers Air Pressure Differences?

Mechanical Equipment

Temperature Differences

Investigation and Diagnostics

Radon Control in Schools

Dhoto Cradit: John Mallo

Cre

Investigation and Diagnostics

Case Study of Crawlspace School

Photo Credit: John Mallon

Investigation and Diagnostics: Extreme Case Study "Extreme" Case Study: Difficult to Mitigation School

- Subslab utility tunnels that served as the outside air and return air mixing chamber
 - The HVAC system
 depressurized the utility
 tunnels and mined radon
 from the soil
- Radon concentrations up to 80 pCi/L

Investigation and Diagnostics Investigation and Diagnostics: Extreme Case Study Initial Diagnostics

- Diagnostic radon concentrations
 - Utility tunnel block walls = 303 pCi/L
 - Utility tunnel subslab = 70 pCi/L in very tight soil
- Based upon PFE testing, we estimated that with very thorough sealing,
 - A tunnel subslab suction point required every 20 feet
 - If block wall depressurization (BWD) was the choice, we estimated
 - A wall suction point at least every 40 feet
 - A subslab depressurization (SSD) suction point in each classroom
 © 2014 Board of Regents University of Minnesota

Phase I Mitigation

- Based upon initial diagnostics and an extremely limited budget, a certified mitigator
 - Sealed openings between tunnel and soil as thoroughly as possible
 - Installed BWD
 - Found PFE lost after 3 to 6 feet from suction points
 - <u>Then we found that utility tunnels were 6X more negative</u> than found during diagnostics (80 Pa)
 - Why?
 - An energy management firm had replaced defective HVAC controls
 - ... Back to the drawing board ...

RFP for Phase II Mitigation

RFP scope of work

- 1. Hard ducting the return/outdoor air to the low pressure side of the utility tunnel fan coils (isolate from source)
- 2. Reduce tunnel depressurization by
 - A. Adding return/OA grills to the tunnel/mixed air plenum
 - B. Add return/OA grills to the tunnel/mixed air plenum +
 - C. Increase BWD suction points +
 - D. Add sealing (BW coating) +
 - E. Add further BWD fan capacity

Based upon our engineer's estimates, we expected:

- **1**. Bids in the \$40,000 to \$50,000 range and
- 2. Additional annual costs of about \$3,000

Response to RFP

- But the one mitigation bid we received was
 - \$750,000
 - No guarantee ~ radon reduction and
 - \$60,000/year increase energy use
- Therefore, we decided to recommend not accepting the proposal and
 - To invest in further diagnostics using HVAC flip flop experiments

Baseline Experimental Condition

- CRM measurements in tunnel and classrooms
 - Daily cycle
 - FCU started at 0700 and shutdown at 1600
 - Radon at start-up = 3.3 pCi/L
 - Radon two hours after start-up to shutdown = 27 pCi/L
 - Radon from shutdown to 6 hours later dropped 27 to 3.2 pCi/L
- With zero OA with the FC on, the ΔP to the outdoors was
 - 120 Pa in the tunnel
 - 100 Pa in the block walls

Average Rn Concentration During Last 22 Hours of 24 Hour Trials and Percent Rn Compared to Previous Base Conditions

	Variabl	es					Average	Redon	Concen	tration	in pCi/I		Radon	
	BWD	MA	SSD	MA	Fan	East		Room	Reom	Room	Princ.	Music	Reduction	n
Experiment	Fans	Fans	Fans	Source	Coils	BWD	Tunnel	#1	#2	#7	Office	Room	Tunnel 1	Upstairs
00. Base Condition Average	off	off	off	tunnel	an.	off	30.3	10.7	6.8	11.4	9,3	0.3		
01. Orginal Operation with BWD	ON	off	off	tunnel	on.	off	30.0	8.3	6.8	10.2	6,9	0.3	7%	19%
02. Blockwall Pressurization (BWP)	REV	off	off	tunnel	on.	off	7.6	6.0	3.3	5.0	4.3	0.2	75%	52%
03. Tunnel Pressurization	off	ON	off	tunnel	on.	off	8.7	3.0	2,3	4.4	2.9	0.2	61%	62%
04. Subslab Depressurization	οff	off	ON	tunnel	on.	off	28,2	9.9	5.4	9.8	8.0	0.5	-9%	9%
05. Hard Duct Mixed Air (MA)	off	off	off	DUCT	on	off	28.5	9.3	5.3	10.1	7.7	0,3	6%	12%
06. BWD + MA Fans	ON	ON	off	tunnel	on	Πo	7.4	2.1	1.4	3.2	2.0	0.2	76%	73%
07. BWD + SSD Fans	ON	off	ON	tunnel	on.	off	23.6	5.8	3.2	7.3	4.3	1.3	5%	41%
08. BWD + MA Duct	ON	off	off	DUCT	on.	off	29.9	8.3	5.4	10,6	7,3	0,4	11%	12%
09. MA Fans + SSD Fans	no	ON	ON	tunnel	00	no	8.1	2.4	1.8	4.1	2.6	0.2	63%	65%
10. MA Fans + MA Duct	off	ON	off	DUCT	on.	off	14.3	6.1	4.7	7.6	5.5	0.6	63%	38%
11. BWD + MA + SSD Fans	ON	ON	ON	tunnel	on	no	10.2	3.8	3.8	6,6	3.6	0.6	74%	67%
12. BWD + SSD Fans + Duct	ON	off	ON	DUCT	00	off	28.6	3.4	1.1	6.9	2.1	0,3	27%	67%
13. BWD + MA Fans on, FCUs off	ON	ON	off	tunnel	OFF	off	3.4	1.2	0.8	3.4	1.1	1.3	89%	80%
14. BWD + FCUs on Setback	ON	off	off	tunnel	SET	off	24.6	9.6	5.3	9,0	6,4	1.3		
15. BWD + Duct + FCU Setback	ON	off	off	DUCT	SET	off	33.0	6.5	3.7	8,4	4.7	0,6		
16. BWD + MA Fans + FCU Setback	ON	ON	off	tunnel	SET	off	16.6	6.9	5.0	7.9	6.1	1.8		
17. BWD on + FCUs off	ON	off	off	tunnel	OFF	off	1.1	0.8	0.7	0.6	0.8	1.0	96%	90%
18. BWD + Outside Air @ 20%	ON	off	no	tunnel	on	no	28.2	11.8	6.1	11.9	7.3	0.2		
19. BWP + FCU Setback	REV	off	off	tunnel	SET	off	20.8	-7.4	3.8	8,6	4.9	1.0	31%	33%
20. BWP + MA Fans + 6 of 12 FCUs	REV	ON	off	tunnel	6 on	no	5.4	5.3	5.6	5.9	5,2	6.6	82%	25%
21. BWP + MA Fans + FCU Setback	REV	ON	off	tunnel	SET	ON	2.0	1.8	1.8	1.8	1.7	6.7	94%	64%
22. BWP + FCU Setback	REV	off	off	tunnel	SET	off	13.5	9.2	6.0	8,4	6,7	2,4		

BWD = block wall depressurization BWP = block wall pressurization FCU = fan coil units MA = mixed air PRINC = principal's REV = reversed SET = setback at night and week-ends

SSD = subslab depressurization

Investigation and Diagnostics Case Study Case Study: Findings

Thorough diagnostics of HVAC system and PFE:

- **1**. Cost an additional \$20,000 (1996 USD)
- 2. Reduced average indoor radon concentrations by 79%
 - From an average of 7.7 pCi/L to 1.6 pCi/L
- **3**. Reduced installation costs by 96% to \$30,000
- 4. Had no impact on energy costs
- 5. Improved overall classroom indoor air quality

Investigation and Diagnostics Mitigation Design Decisions Flow Chart (1:2)

© 2014 Board of Regents University of Minnesota

Note: Methods including ASD are sometimes combined if individually not capable as stand alone solutions.

Investigation and Diagnostics Mitigation Design Decisions Flow Chart (2:2)

Mitigation Installation

Radon Control in Schools

Hiring Potential Professionals

- NRPP radon contractor proficiency program
 - Understands the control of soil air entry
- Mechanical engineer
 - Designs air handling systems and writes bid documents
- Mechanical contractor
 - Modifies and installs air handling and conditioning equipment
- Controls contractor
 - Adjusts, modifies and installs HVAC control systems
- Test, adjust and balance (TAB) contractor
 - Measures airflows

Membrane in Place

Radon Mitigation
Installing
a Suction
Point

Photo Credit: John Mallon

Installing Vent Ducts (steel pipe in this case)

Down-Blast Exhaust Fan

Theatrical Fog Showing Flow Pattern of Down-Blast Exhaust

© 2014 Board of Regents University of Minnesota